Global Demand and Supply Sentiment: Evidence From Earnings Calls
Franz Ruch and
Temel Taskin
Oxford Bulletin of Economics and Statistics, 2024, vol. 86, issue 2, 314-334
Abstract:
This paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborate our sentiment measure by identifying demand and supply shocks using a structural Bayesian vector autoregression model. The results highlight sharp contrast in the size of supply and demand conditions over time and across sectors. While the Great Recession was characterized by weak demand, COVID‐19 caused sizable disruptions to both demand and supply, with varying relative importance across major sectors. Furthermore, certain sub‐sectors, such as professional and business services, internet retail, and grocery/department stores, fared better than others during the pandemic.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/obes.12587
Related works:
Working Paper: Global Demand and Supply Sentiment: Evidence from Earnings Calls (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:obuest:v:86:y:2024:i:2:p:314-334
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0305-9049
Access Statistics for this article
Oxford Bulletin of Economics and Statistics is currently edited by Christopher Adam, Anindya Banerjee, Christopher Bowdler, David Hendry, Adriaan Kalwij, John Knight and Jonathan Temple
More articles in Oxford Bulletin of Economics and Statistics from Department of Economics, University of Oxford Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().