Interpolation and optimal linear prediction
L.C.A. Corsten
Statistica Neerlandica, 1989, vol. 43, issue 2, 69-84
Abstract:
This paper is concerned with the interpolation of spatially distributed observations of a quantitative phenomenon, sometimes referred to as kriging. This activity can be understood as a prediction procedure for values of random functions under stationarity assumptions in a polynomial linear regression context. After a heuristic and an exact derivation of the best linear unbiased prediction procedure (and the variance of prediction error) if the covariance function relating covariance between two possible observations to their mutual distance is known, follows the introduction of weaker assumptions admitting the definition of the variance only for increments of a certain order by a pseudoco–variance function. A particular related case is the so–called semivariogram for increments of order one. The prediction procedure turns out to be similar to that in the previous situation. The weaker assumptions allow an unbiased estimation of the unknown pseudocovahance function of polynomial form under restrictions imposed by Fourier transformation. Extension from point–wise observations or predictions to area or volume averages is touched upon.
Date: 1989
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1467-9574.1989.tb01249.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:43:y:1989:i:2:p:69-84
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().