Optimal transformations for categorical autoregressive time series
S. Van Buuren
Statistica Neerlandica, 1997, vol. 51, issue 1, 90-106
Abstract:
This paper describes a method for finding optimal transformations for analyzing time series by autoregressive models. ‘Optimal’ implies that the agreement between the autoregressive model and the transformed data is maximal. Such transformations help 1) to increase the model fit, and 2) to analyze categorical time series. The method uses an alternating least squares algorithm that consists of two main steps: estimation and transformation. Nominal, ordinal and numerical data can be analyzed. Some alternative applications of the general idea are highlighted: intervention analysis, smoothing categorical time series, predictable components, spatial modeling and cross‐sectional multivariate analysis. Limitations, modeling issues and possible extensions are briefly indicated.
Date: 1997
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/1467-9574.00039
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:51:y:1997:i:1:p:90-106
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().