Bayesian estimation of transition probabilities from repeated cross sections
Ben Pelzer and
Rob Eisinga
Statistica Neerlandica, 2002, vol. 56, issue 1, 23-33
Abstract:
This paper discusses some simple practical advantages of Markov chain Monte Carlo (MCMC) methods in estimating entry and exit transition probabilities from repeated independent surveys. Simulated data are used to illustrate the usefulness of MCMC methods when the likelihood function has multiple local maxima. Actual data on the evaluation of an HIV prevention intervention program among drug users are used to demonstrate the advantage of using prior information to enhance parameter identificaiton. The latter example also demonstrates an important strength of the MCMC approach, namely the ability to make inferences on arbitrary functions of model parameters.
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/1467-9574.00063
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:56:y:2002:i:1:p:23-33
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().