Multinomial distributions applied to random sampling of particulate materials
B. Geelhoed and
H. J. Glass
Statistica Neerlandica, 2002, vol. 56, issue 1, 58-76
Abstract:
When sampling a batch consisting of particulate material, the distribution of a sample estimator can be characterized using knowledge about the sample drawing process. With Bernoulli sampling, the number of particles in the sample is binomially distributed. Because this is rarely realized in practice, we propose a sampling design in which the possible samples have a nearly equal mass. Expected values and variances of the sample estimator are calculated. It is shown that the sample estimator becomes identical to the Horvitz–Thompson estimator in the case of a large batch‐to‐sample mass ratio and a large sample mass. Simulations and experiments were performed to test the theory. Simulations confirm that the round‐off error due to the discrete nature of particles is negligible for large sample sizes. Sampling experiments were carried out with a mixture of PolyPropylene (PP) and PolyTetraFluorEthylene (PTFE) spheres suspended in a viscous medium. The measured and theoretical variations are in good agreement.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/1467-9574.03500
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:56:y:2002:i:1:p:58-76
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().