Bayesian inference in time series models using kernel quasi likelihoods
Mike Tsionas
Statistica Neerlandica, 2002, vol. 56, issue 3, 285-294
Abstract:
The paper takes up Bayesian inference in time series models when essentially nothing is known about the distribution of the dependent variable given past realizations or other covariates. It proposes the use of kernel quasi likelihoods upon which formal inference can be based. Gibbs sampling with data augmentation is used to perform the computations related to numerical Bayesian analysis of the model. The method is illustrated with artificial and real data sets.
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/1467-9574.04800
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:56:y:2002:i:3:p:285-294
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().