Nested multiple imputation of NMES via partially incompatible MCMC
Donald B. Rubin
Statistica Neerlandica, 2003, vol. 57, issue 1, 3-18
Abstract:
The multiple imputation of the National Medical Expenditure Survey (NMES) involved the use of two new techniques, both having potentially broad applicability. The first is to use distributionally incompatible MCMC (Markov Chain Monte Carlo), but to apply it only partially, to impute the missing values that destroy a monotone pattern, thereby limiting the extent of incompatibility. The second technique is to split the missing data into two parts, one that is much more computationally expensive to impute than the other, and create several imputations of the second part for each of the first part, thereby creating nested multiple imputations with their increased inferential efficiency.
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
https://doi.org/10.1111/1467-9574.00217
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:57:y:2003:i:1:p:3-18
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().