Latent Markov Modelling of Recidivism Data
Catrien C.J.H. Bijleveld and
Ab Mooijaart
Statistica Neerlandica, 2003, vol. 57, issue 3, 305-320
Abstract:
This article discusses the application of latent Markov modelling for the analysis of recidivism data. We briefly examine the relations of Markov modelling with log–linear analysis, pointing out pertinent differences as well. We show how the restrictive Markov model may be more easily applicable by adding latent variables to the model, in which case the latent Markov model is a dynamic version of the latent class model. As an illustration, we apply latent Markov analysis on an empirical data set of juvenile prosecution careers, showing how the Markov analyses producing well‐fitting and interpretable solutions. We end by comparing the possible contributions of Markov modelling in recidivism research, outlining its drawbacks as well. Recommendations and directions for future research conclude the article.
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/1467-9574.00233
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:57:y:2003:i:3:p:305-320
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().