A multivariate Poisson mixture model for marketing applications
Tom Brijs,
Dimitris Karlis,
Gilbert Swinnen,
Koen Vanhoof,
Geert Wets and
Puneet Manchanda
Statistica Neerlandica, 2004, vol. 58, issue 3, 322-348
Abstract:
This paper describes a multivariate Poisson mixture model for clustering supermarket shoppers based on their purchase frequency in a set of product categories. The multivariate nature of the model accounts for cross‐selling effects between the purchases made in different product categories. However, for computational reasons, most multivariate approaches limit the covariance structure by including just one common interaction term, or by not including any covariance at all. Although this reduces the number of parameters significantly, it is often too simplistic as typically multiple interactions exist on different levels. This paper proposes a theoretically more complete variance/covariance structure of the multivariate Poisson model, based on domain knowledge or preliminary statistical analysis of significant purchase interaction effects in the data. Consequently, the model does not contain more parameters than necessary, whilst still accounting for the existing covariance in the data. Practically, retail category managers can use the model to devise customized merchandising strategies.
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9574.2004.00125.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:58:y:2004:i:3:p:322-348
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().