EconPapers    
Economics at your fingertips  
 

Computing marginal likelihoods from a single MCMC output

Ming‐Hui Chen

Statistica Neerlandica, 2005, vol. 59, issue 1, 16-29

Abstract: In this article, we propose new Monte Carlo methods for computing a single marginal likelihood or several marginal likelihoods for the purpose of Bayesian model comparisons. The methods are motivated by Bayesian variable selection, in which the marginal likelihoods for all subset variable models are required to compute. The proposed estimates use only a single Markov chain Monte Carlo (MCMC) output from the joint posterior distribution and it does not require the specific structure or the form of the MCMC sampling algorithm that is used to generate the MCMC sample to be known. The theoretical properties of the proposed method are examined in detail. The applicability and usefulness of the proposed method are demonstrated via ordinal data probit regression models. A real dataset involving ordinal outcomes is used to further illustrate the proposed methodology.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9574.2005.00276.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:59:y:2005:i:1:p:16-29

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:59:y:2005:i:1:p:16-29