EconPapers    
Economics at your fingertips  
 

Convergence of stochastic approximation algorithms under irregular conditions

Jian Zhang and Faming Liang

Statistica Neerlandica, 2008, vol. 62, issue 3, 393-403

Abstract: We consider a class of stochastic approximation (SA) algorithms for solving a system of estimating equations. The standard condition for the convergence of the SA algorithms is that the estimating functions are locally Lipschitz continuous. Here, we show that this condition can be relaxed to the extent that the estimating functions are bounded and continuous almost everywhere. As a consequence, the use of the SA algorithm can be extended to some problems with irregular estimating functions. Our theoretical results are illustrated by solving an estimation problem for exponential power mixture models.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9574.2008.00397.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:62:y:2008:i:3:p:393-403

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:62:y:2008:i:3:p:393-403