Forecasting inflation using time-varying Bayesian model averaging
Jordi Maas
Statistica Neerlandica, 2014, vol. 68, issue 3, 149-182
Abstract:
type="main">
This paper presents a Bayesian model averaging regression framework for forecasting US inflation, in which the set of predictors included in the model is automatically selected from a large pool of potential predictors and the set of regressors is allowed to change over time. Using real-time data on the 1960–2011 period, this model is applied to forecast personal consumption expenditures and gross domestic product deflator inflation. The results of this forecasting exercise show that, although it is not able to beat a simple random-walk model in terms of point forecasts, it does produce superior density forecasts compared with a range of alternative forecasting models. Moreover, a sensitivity analysis shows that the forecasting results are relatively insensitive to prior choices and the forecasting performance is not affected by the inclusion of a very large set of potential predictors.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1111/stan.12027 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:68:y:2014:i:3:p:149-182
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().