EconPapers    
Economics at your fingertips  
 

Variable selection via composite quantile regression with dependent errors

Yanlin Tang, Xinyuan Song and Zhongyi Zhu

Statistica Neerlandica, 2015, vol. 69, issue 1, 1-20

Abstract: type="main" xml:id="stan12035-abs-0001"> We propose composite quantile regression for dependent data, in which the errors are from short-range dependent and strictly stationary linear processes. Under some regularity conditions, we show that composite quantile estimator enjoys root-n consistency and asymptotic normality. We investigate the asymptotic relative efficiency of composite quantile estimator to both single-level quantile regression and least-squares regression. When the errors have finite variance, the relative efficiency of composite quantile estimator with respect to the least-squares estimator has a universal lower bound. Under some regularity conditions, the adaptive least absolute shrinkage and selection operator penalty leads to consistent variable selection, and the asymptotic distribution of the non-zero coefficient is the same as that of the counterparts obtained when the true model is known. We conduct a simulation study and a real data analysis to evaluate the performance of the proposed approach.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1111/stan.12035 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:69:y:2015:i:1:p:1-20

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:69:y:2015:i:1:p:1-20