EconPapers    
Economics at your fingertips  
 

SCAD-penalized quantile regression for high-dimensional data analysis and variable selection

Muhammad Amin, Lixin Song, Milton Abdul Thorlie and Xiaoguang Wang

Statistica Neerlandica, 2015, vol. 69, issue 3, 212-235

Abstract: type="main">

The present penalized quantile variable selection methods are only applicable to finite number of predictors or do not have oracle property associated with estimator. This technique is considered as an alternative to ordinary least squares regression in case of the outliers and the heavy-tailed errors existing in linear models. The variable selection through quantile regression with diverging number of parameters is investigated in this paper. The convergence rate of estimator with smoothly clipped absolute deviation penalty function is also studied. Moreover, the oracle property with proper selection of tuning parameter for quantile regression under certain regularity conditions is also established. In addition, the rank correlation screening method is used to accommodate ultra-high dimensional data settings. Monte Carlo simulations demonstrate finite performance of the proposed estimator. The results of real data reveal that this approach provides substantially more information as compared with ordinary least squares, conventional quantile regression, and quantile lasso.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1111/stan.12056 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:69:y:2015:i:3:p:212-235

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:69:y:2015:i:3:p:212-235