Copula Gaussian graphical models with penalized ascent Monte Carlo EM algorithm
Fentaw Abegaz and
Ernst Wit
Statistica Neerlandica, 2015, vol. 69, issue 4, 419-441
Abstract:
type="main" xml:id="stan12066-abs-0001"> Typical data that arise from surveys, experiments, and observational studies include continuous and discrete variables. In this article, we study the interdependence among a mixed (continuous, count, ordered categorical, and binary) set of variables via graphical models. We propose an ℓ 1 -penalized extended rank likelihood with an ascent Monte Carlo expectation maximization approach for the copula Gaussian graphical models and establish near conditional independence relations and zero elements of a precision matrix. In particular, we focus on high-dimensional inference where the number of observations are in the same order or less than the number of variables under consideration. To illustrate how to infer networks for mixed variables through conditional independence, we consider two datasets: one in the area of sports and the other concerning breast cancer.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1111/stan.12066 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:69:y:2015:i:4:p:419-441
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().