Statistical modelling of cell movement
Diana Giurghita and
Dirk Husmeier
Statistica Neerlandica, 2018, vol. 72, issue 3, 265-280
Abstract:
Collective cell movement affects vital biological processes in the human organism such as wound healing, immune response, and cancer metastasis. A better understanding of the mechanisms driving cell movement is then essential for the advancement of medical treatments. In this paper, we demonstrate how the unscented Kalman filter, a technique used extensively in engineering in the context of filtering, can be applied to estimate random or directed cell movement. Our proposed model, formulated using stochastic differential equations, is fitted on data describing the movement of Dictyostelium cells, an amoeba routinely used as a proxy for eukaryotic cell movement.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/stan.12140
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:72:y:2018:i:3:p:265-280
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().