MCMC methods for inference in a mathematical model of pulmonary circulation
L. Mihaela Păun,
M. Umar Qureshi,
Mitchel Colebank,
Nicholas A. Hill,
Mette S. Olufsen,
Mansoor A. Haider and
Dirk Husmeier
Statistica Neerlandica, 2018, vol. 72, issue 3, 306-338
Abstract:
This study performs parameter inference in a partial differential equations system of pulmonary circulation. We use a fluid dynamics network model that takes selected parameter values and mimics the behaviour of the pulmonary haemodynamics under normal physiological and pathological conditions. This is of medical interest as it enables tracking the progression of pulmonary hypertension. We show how we make the fluids model tractable by reducing the parameter dimension from a 55D to a 5D problem. The Delayed Rejection Adaptive Metropolis algorithm, coupled with constraint non‐linear optimization, is successfully used to learn the parameter values and quantify the uncertainty in the parameter estimates. To accommodate for different magnitudes of the parameter values, we introduce an improved parameter scaling technique in the Delayed Rejection Adaptive Metropolis algorithm. Formal convergence diagnostics are employed to check for convergence of the Markov chains. Additionally, we perform model selection using different information criteria, including Watanabe Akaike Information Criteria.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/stan.12132
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:72:y:2018:i:3:p:306-338
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().