Language comprehension as a multi‐label classification problem
Konstantin Sering,
Petar Milin and
R. Harald Baayen
Statistica Neerlandica, 2018, vol. 72, issue 3, 339-353
Abstract:
The initial stage of language comprehension is a multilabel classification problem. Listeners or readers, presented with an utterance, need to discriminate between the intended words and the tens of thousands of other words they know. We propose to address this problem by pairing two networks. The first network is independently learned with the Rescorla Wagner model. The second network is based on the first network and learned with the rule of Widrow and Hoff. The first network has to recover from sublexical input features the meanings encoded in the language signal, resulting in a vector of activations over the lexicon. The second network takes this vector as input and further reduces uncertainty about the intended message. Classification performance for a lexicon with 52,000 entries is good. The model also correctly predicts several aspects of human language comprehension. By rejecting the traditional linguistic assumption that language is a (de)compositional system, and by instead espousing a discriminative approach, a more parsimonious yet highly effective functional characterization of the initial stage of language comprehension is obtained.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/stan.12134
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:72:y:2018:i:3:p:339-353
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().