A threshold stochastic volatility model with explanatory variables
Han Li,
Kai Yang and
Dehui Wang
Statistica Neerlandica, 2019, vol. 73, issue 1, 118-138
Abstract:
In this paper, we introduce a threshold stochastic volatility model with explanatory variables. The Bayesian method is considered in estimating the parameters of the proposed model via the Markov chain Monte Carlo (MCMC) algorithm. Gibbs sampling and Metropolis–Hastings sampling methods are used for drawing the posterior samples of the parameters and the latent variables. In the simulation study, the accuracy of the MCMC algorithm, the sensitivity of the algorithm for model assumptions, and the robustness of the posterior distribution under different priors are considered. Simulation results indicate that our MCMC algorithm converges fast and that the posterior distribution is robust under different priors and model assumptions. A real data example was analyzed to explain the asymmetric behavior of stock markets.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/stan.12143
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:73:y:2019:i:1:p:118-138
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().