EconPapers    
Economics at your fingertips  
 

Nonparametric identification and estimation of current status data in the presence of death

Lu Mao

Statistica Neerlandica, 2019, vol. 73, issue 3, 395-413

Abstract: We present a nonparametric study of current status data in the presence of death. Such data arise from biomedical investigations in which patients are examined for the onset of a certain disease, for example, tumor progression, but may die before the examination. A key difference between such studies on human subjects and the survival–sacrifice model in animal carcinogenicity experiments is that, due to ethical and perhaps technical reasons, deceased human subjects are not examined, so that the information on their disease status is lost. We show that, for current status data with death, only the overall and disease‐free survival functions can be identified, whereas the cumulative incidence of the disease is not identifiable. We describe a fast and stable algorithm to estimate the disease‐free survival function by maximizing a pseudo‐likelihood with plug‐in estimates for the overall survival rates. It is then proved that the global rate of convergence for the nonparametric maximum pseudo‐likelihood estimator is equal to Op(n−1/3) or the convergence rate of the estimated overall survival function, whichever is slower. Simulation studies show that the nonparametric maximum pseudo‐likelihood estimators are fairly accurate in small‐ to medium‐sized samples. Real data from breast cancer studies are analyzed as an illustration.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/stan.12175

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:73:y:2019:i:3:p:395-413

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:73:y:2019:i:3:p:395-413