EconPapers    
Economics at your fingertips  
 

Bivariate exponentiated‐exponential geometric regression model

Felix Famoye

Statistica Neerlandica, 2019, vol. 73, issue 3, 434-450

Abstract: A bivariate exponentiated‐exponential geometric regression model that allows negative, zero, or positive correlation is defined and studied. The model can accommodate under‐ or over‐dispersed count data. The regression model is based on the univariate exponentiated‐exponential geometric distribution, and the marginal means of the bivariate model are functions of the explanatory variables. The parameters of the bivariate regression model are estimated by using the maximum likelihood method. Some test statistics including goodness of fit are discussed. A simulation study is conducted to compare the model with the bivariate generalized Poisson regression model. One numerical data set is used to illustrate the application of the regression model.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/stan.12177

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:73:y:2019:i:3:p:434-450

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:73:y:2019:i:3:p:434-450