Bivariate exponentiated‐exponential geometric regression model
Felix Famoye
Statistica Neerlandica, 2019, vol. 73, issue 3, 434-450
Abstract:
A bivariate exponentiated‐exponential geometric regression model that allows negative, zero, or positive correlation is defined and studied. The model can accommodate under‐ or over‐dispersed count data. The regression model is based on the univariate exponentiated‐exponential geometric distribution, and the marginal means of the bivariate model are functions of the explanatory variables. The parameters of the bivariate regression model are estimated by using the maximum likelihood method. Some test statistics including goodness of fit are discussed. A simulation study is conducted to compare the model with the bivariate generalized Poisson regression model. One numerical data set is used to illustrate the application of the regression model.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/stan.12177
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:73:y:2019:i:3:p:434-450
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().