EconPapers    
Economics at your fingertips  
 

Bayesian smooth‐and‐match inference for ordinary differential equations models linear in the parameters

Saverio Ranciati (), Ernst C. Wit and Cinzia Viroli

Statistica Neerlandica, 2020, vol. 74, issue 2, 125-144

Abstract: Dynamic processes are crucial in many empirical fields, such as in oceanography, climate science, and engineering. Processes that evolve through time are often well described by systems of ordinary differential equations (ODEs). Fitting ODEs to data has long been a bottleneck because the analytical solution of general systems of ODEs is often not explicitly available. We focus on a class of inference techniques that uses smoothing to avoid direct integration. In particular, we develop a Bayesian smooth‐and‐match strategy that approximates the ODE solution while performing Bayesian inference on the model parameters. We incorporate in the strategy two main sources of uncertainty: the noise level of the measured observations and the model approximation error. We assess the performance of the proposed approach in an extensive simulation study and on a canonical data set of neuronal electrical activity.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/stan.12192

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:74:y:2020:i:2:p:125-144

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:74:y:2020:i:2:p:125-144