Mean squared error of ridge estimators in logistic regression
Rok Blagus and
Jelle J. Goeman
Statistica Neerlandica, 2020, vol. 74, issue 2, 159-191
Abstract:
It is well known that the maximum likelihood estimator (MLE) is inadmissible when estimating the multidimensional Gaussian location parameter. We show that the verdict is much more subtle for the binary location parameter. We consider this problem in a regression framework by considering a ridge logistic regression (RR) with three alternative ways of shrinking the estimates of the event probabilities. While it is shown that all three variants reduce the mean squared error (MSE) of the MLE, there is at the same time, for every amount of shrinkage, a true value of the location parameter for which we are overshrinking, thus implying the minimaxity of the MLE in this family of estimators. Little shrinkage also always reduces the MSE of individual predictions for all three RR estimators; however, only the naive estimator that shrinks toward 1/2 retains this property for any generalized MSE (GMSE). In contrast, for the two RR estimators that shrink toward the common mean probability, there is always a GMSE for which even a minute amount of shrinkage increases the error. These theoretical results are illustrated on a numerical example. The estimators are also applied to a real data set, and practical implications of our results are discussed.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/stan.12201
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:74:y:2020:i:2:p:159-191
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().