Objective methods for graphical structural learning
Nikolaos Petrakis,
Stefano Peluso,
Dimitris Fouskakis and
Guido Consonni
Statistica Neerlandica, 2020, vol. 74, issue 3, 420-438
Abstract:
Graphical models are used for expressing conditional independence relationships among variables by the means of graphs, whose structure is typically unknown and must be inferred by the data at hand. We propose a theoretically sound Objective Bayes procedure for graphical model selection. Our method is based on the Expected‐Posterior Prior and on the Power‐Expected‐Posterior Prior. We use as input of the proposed methodology a default improper prior and suggest computationally efficient approximations of Bayes factors and posterior odds. In a variety of simulated scenarios with varying number of nodes and sample sizes, we show that our method is highly competitive with, or better than, current benchmarks. We also discuss an application to protein‐signaling data, which wieldy confirms existing results in the scientific literature.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/stan.12211
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:74:y:2020:i:3:p:420-438
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().