k‐Nearest neighbors local linear regression for functional and missing data at random
Mustapha Rachdi,
Ali Laksaci,
Zoulikha Kaid,
Abbassia Benchiha and
Fahimah A. Al‐Awadhi
Statistica Neerlandica, 2021, vol. 75, issue 1, 42-65
Abstract:
We combine the k‐Nearest Neighbors (kNN) method to the local linear estimation (LLE) approach to construct a new estimator (LLE‐kNN) of the regression operator when the regressor is of functional type and the response variable is a scalar but observed with some missing at random (MAR) observations. The resulting estimator inherits many of the advantages of both approaches (kNN and LLE methods). This is confirmed by the established asymptotic results, in terms of the pointwise and uniform almost complete consistencies, and the precise convergence rates. In addition, a numerical study (i) on simulated data, then (ii) on a real dataset concerning the sugar quality using fluorescence data, were conducted. This practical study clearly shows the feasibility and the superiority of the LLE‐kNN estimator compared to competitive estimators.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/stan.12224
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:75:y:2021:i:1:p:42-65
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().