Estimation of the incubation time distribution for COVID‐19
Piet Groeneboom
Statistica Neerlandica, 2021, vol. 75, issue 2, 161-179
Abstract:
We consider smooth nonparametric estimation of the incubation time distribution of COVID‐19, in connection with the investigation of researchers from the National Institute for Public Health and the Environment (Dutch: RIVM) of 88 travelers from Wuhan: Backer et al. (2020). The advantages of the smooth nonparametric approach with respect to the parametric approach, using three parametric distributions (Weibull, log‐normal and gamma) in Backer et al. (2020) is discussed. It is shown that the typical rate of convergence of the smooth estimate of the density is n2/7 in a continuous version of the model, where n is the sample size. The (nonsmoothed) nonparametric maximum likelihood estimator itself is computed by the iterative convex minorant algorithm (Groeneboom and Jongbloed (2014)). All computations are available as R scripts in Groeneboom (2020a).
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/stan.12231
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:75:y:2021:i:2:p:161-179
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().