Locally asymptotically efficient estimation for parametric PINAR(p) models
Mohamed Sadoun and
Mohamed Bentarzi
Statistica Neerlandica, 2021, vol. 75, issue 3, 257-289
Abstract:
This article focuses on the efficient estimation problem of an arbitrary‐order periodic integer‐valued autoregressive (PINAR(p)) model. Both the local asymptotic normality (LAN) property and the local asymptotic linearity property satisfied by the central sequence of the underlying model are established. Using these results, we construct efficient estimators for the parameters in a parametric framework. The consistency property of these efficient estimations is evaluated via an intensive simulation study. Moreover, the performances of these efficient estimations, over the conditional maximum likelihood (CML) and the conditional least squares (CLS) estimations, are also illustrated via an intensive simulation study and an application on real data set.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/stan.12234
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:75:y:2021:i:3:p:257-289
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().