Bayesian subcohort selection for longitudinal covariate measurements in follow‐up studies
Jaakko Reinikainen and
Juha Karvanen
Statistica Neerlandica, 2022, vol. 76, issue 4, 372-390
Abstract:
We propose an approach for the planning of longitudinal covariate measurements in follow‐up studies where covariates are time‐varying. We assume that the entire cohort cannot be selected for longitudinal measurements due to financial limitations, and study how a subset of the cohort should be selected optimally, in order to obtain precise estimates of covariate effects in a survival model. In our approach, the study will be designed sequentially utilizing the data collected in previous measurements of the individuals as prior information. We propose using a Bayesian optimality criterion in the subcohort selections, which is compared with simple random sampling using simulated and real follow‐up data. Our work improves the computational approach compared to the previous research on the topic so that designs with several covariates and measurement points can be implemented. As an example we derive the optimal design for studying the effect of body mass index and smoking on all‐cause mortality in a Finnish longitudinal study. Our results support the conclusion that the precision of the estimates can be clearly improved by optimal design.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/stan.12264
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:76:y:2022:i:4:p:372-390
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().