Threshold estimation for continuous three‐phase polynomial regression models with constant mean in the middle regime
Chih‐Hao Chang,
Kam‐Fai Wong and
Wei‐Yee Lim
Statistica Neerlandica, 2023, vol. 77, issue 1, 4-47
Abstract:
This paper considers a continuous three‐phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the model is polynomial of order zero in the middle regime, and is polynomial of higher orders elsewhere. We denote this model by ℳ2$$ {\mathcal{M}}_2 $$, which includes models with one or no threshold points, denoted by ℳ1$$ {\mathcal{M}}_1 $$ and ℳ0$$ {\mathcal{M}}_0 $$, respectively, as special cases. We provide an ordered iterative least squares (OiLS) method when estimating ℳ2$$ {\mathcal{M}}_2 $$ and establish the consistency of the OiLS estimators under mild conditions. When the underlying model is ℳ1$$ {\mathcal{M}}_1 $$ and is (d0−1)$$ \left({d}_0-1\right) $$th‐order differentiable but not d0$$ {d}_0 $$th‐order differentiable at the threshold point, we further show the Op(N−1/(d0+2))$$ {O}_p\left({N}^{-1/\left({d}_0+2\right)}\right) $$ convergence rate of the OiLS estimators, which can be faster than the Op(N−1/(2d0))$$ {O}_p\left({N}^{-1/\left(2{d}_0\right)}\right) $$ convergence rate given in Feder when d0≥3$$ {d}_0\ge 3 $$. We also apply a model‐selection procedure for selecting ℳκ$$ {\mathcal{M}}_{\kappa } $$; κ=0,1,2$$ \kappa =0,1,2 $$. When the underlying model exists, we establish the selection consistency under the aforementioned conditions. Finally, we conduct simulation experiments to demonstrate the finite‐sample performance of our asymptotic results.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/stan.12268
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:77:y:2023:i:1:p:4-47
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().