EconPapers    
Economics at your fingertips  
 

The optimal input‐independent baseline for binary classification: The Dutch Draw

Joris Pries, Etienne van de Bijl, Jan Klein, Sandjai Bhulai and Rob van der Mei

Statistica Neerlandica, 2023, vol. 77, issue 4, 543-554

Abstract: Before any binary classification model is taken into practice, it is important to validate its performance on a proper test set. Without a frame of reference given by a baseline method, it is impossible to determine if a score is “good” or “bad.” The goal of this paper is to examine all baseline methods that are independent of feature values and determine which model is the “best” and why. By identifying which baseline models are optimal, a crucial selection decision in the evaluation process is simplified. We prove that the recently proposed Dutch Draw baseline is the best input‐independent classifier (independent of feature values) for all order‐invariant measures (independent of sequence order) assuming that the samples are randomly shuffled. This means that the Dutch Draw baseline is the optimal baseline under these intuitive requirements and should therefore be used in practice.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/stan.12297

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:77:y:2023:i:4:p:543-554

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:77:y:2023:i:4:p:543-554