EconPapers    
Economics at your fingertips  
 

Linear regression models with multiplicative distortions under new identifiability conditions

Jun Zhang, Bingqing Lin and Yan Zhou

Statistica Neerlandica, 2024, vol. 78, issue 1, 25-67

Abstract: This paper considers linear regression models when neither the response variable nor the covariates can be directly observed, but are measured with multiplicative distortion measurement errors. We propose new identifiability conditions for the distortion functions via the varying coefficient models, then moment‐based estimators of parameters in the model are proposed by using the estimated varying coefficient functions. This method does not require the independence condition between the confounding variables and the unobserved response and variables. We establish the connections among the varying coefficient based estimators, the conditional mean calibration and the conditional absolute mean calibration. We study the asymptotic results of these proposed estimators, and discuss their asymptotic efficiencies. Lastly, we make some comparisons among the proposed estimators through the simulation. These methods are applied to analyze a real dataset for an illustration.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/stan.12304

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:78:y:2024:i:1:p:25-67

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:78:y:2024:i:1:p:25-67