EconPapers    
Economics at your fingertips  
 

An expectation-based metric for NFL field goal kickers

Pasteur R. Drew () and Cunningham-Rhoads Kyle
Additional contact information
Pasteur R. Drew: Mathematics and Computer Science, College of Wooster, 311 Taylor Hall, 1189 Beall Ave., Wooster, OH 44691, USA
Cunningham-Rhoads Kyle: Mathematics and Computer Science, College of Wooster, 311 Taylor Hall, 1189 Beall Ave., Wooster, OH 44691, USA

Journal of Quantitative Analysis in Sports, 2014, vol. 10, issue 1, 49-66

Abstract: The standard metric for American football field goal kickers is simply the percentage of attempts successfully converted. Due to variance in distance of attempts and other conditions (weather, altitude, defense, etc.), we argue that field goal percentage is an insufficient measure of kicker performance. Using three seasons of NFL data, we construct a multivariate logistic regression model for the success probability of a given attempt. This leads naturally to metrics in which a kicker’s performance is compared to model expectations, if a replacement-level player was attempting the same kicks. Player salaries correlate only weakly with our measures of field goal kicking success. We find that those kickers selected to the Pro Bowl and All-Pro teams were rather mediocre by our metrics, over the seasons studied. The relative difficulty of kicking in various stadiums is also considered. Finally, we discuss the degree to which field goal kicking is a skill that can be maintained over multiple seasons.

Keywords: kicker; field goal; football; replacement player; expectation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1515/jqas-2013-0039 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:10:y:2014:i:1:p:49-66:n:1

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html

DOI: 10.1515/jqas-2013-0039

Access Statistics for this article

Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman

More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:jqsprt:v:10:y:2014:i:1:p:49-66:n:1