EconPapers    
Economics at your fingertips  
 

A finite mixture latent trajectory model for modeling ultrarunners’ behavior in a 24-hour race

Francesco Bartolucci and Murphy Thomas Brendan
Additional contact information
Murphy Thomas Brendan: University College Dublin, Dublin, Ireland

Journal of Quantitative Analysis in Sports, 2015, vol. 11, issue 4, 193-203

Abstract: A finite mixture latent trajectory model is developed to study the performance and strategy of runners in a 24-h long ultra running race. The model facilitates clustering of runners based on their speed and propensity to rest and thus reveals the strategies used in the race. Inference for the adopted latent trajectory model is achieved using an expectation-maximization algorithm. Fitting the model to data from the 2013 World Championships reveals three clearly separated clusters of runners who exhibit different strategies throughout the race. The strategies show that runners can be grouped in terms of their average moving speed and their propensity to rest during the race. The effect of age and gender on the probability of belonging to each cluster is also investigated.

Keywords: clustering; expectation-maximization algorithm; non-ignorable drop-out; ultra running (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1515/jqas-2014-0060 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:11:y:2015:i:4:p:193-203:n:1

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html

DOI: 10.1515/jqas-2014-0060

Access Statistics for this article

Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman

More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-22
Handle: RePEc:bpj:jqsprt:v:11:y:2015:i:4:p:193-203:n:1