EconPapers    
Economics at your fingertips  
 

Bayesian survival analysis of batsmen in Test cricket

Stevenson Oliver George () and Brewer Brendon J.
Additional contact information
Stevenson Oliver George: University of Auckland - Statistics, Auckland, New Zealand
Brewer Brendon J.: University of Auckland - Statistics, Auckland, New Zealand

Journal of Quantitative Analysis in Sports, 2017, vol. 13, issue 1, 25-36

Abstract: Cricketing knowledge tells us batting is more difficult early in a player’s innings but becomes easier as a player familiarizes themselves with the conditions. In this paper, we develop a Bayesian survival analysis method to predict the Test Match batting abilities for international cricketers. The model is applied in two stages, firstly to individual players, allowing us to quantify players’ initial and equilibrium batting abilities, and the rate of transition between the two. This is followed by implementing the model using a hierarchical structure, providing us with more general inference concerning a selected group of opening batsmen from New Zealand. The results indicate most players begin their innings playing with between only a quarter and half of their potential batting ability. Using the hierarchical structure we are able to make predictions for the batting abilities of the next opening batsman to debut for New Zealand. Additionally, we compare and identify players who excel in the role of opening the batting, which has practical implications in terms of batting order and team selection policy.

Keywords: Bayesian survival analysis; cricket; hierarchical modelling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1515/jqas-2016-0090 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:13:y:2017:i:1:p:25-36:n:3

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html

DOI: 10.1515/jqas-2016-0090

Access Statistics for this article

Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman

More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:jqsprt:v:13:y:2017:i:1:p:25-36:n:3