EconPapers    
Economics at your fingertips  
 

Identifying NCAA tournament upsets using Balance Optimization Subset Selection

Dutta Shouvik, Jacobson Sheldon H. () and Sauppe Jason J.
Additional contact information
Dutta Shouvik: University of Illinois – Computer Science, Urbana, IL, USA
Jacobson Sheldon H.: University of Illinois – Computer Science, Urbana, IL, USA
Sauppe Jason J.: University of Wisconsin–La Crosse, Computer Science, La Crosse, WI, USA

Journal of Quantitative Analysis in Sports, 2017, vol. 13, issue 2, 79-93

Abstract: The NCAA basketball tournament attracts over 60 million people who fill out a bracket to try to predict the outcome of every tournament game correctly. Predictions are often made on the basis of instinct, statistics, or a combination of the two. This paper proposes a technique to select round-of-64 upsets in the tournament using a Balance Optimization Subset Selection model. The model determines which games feature match-ups that are statistically most similar to the match-ups in historical upsets. The technique is then applied to the tournament in each of the 13 years from 2003 to 2015 in order to select two games as potential upsets each year. Of the 26 selected games, 10 (38.4%) were actual upsets, which is more than twice as many as the expected number of correct selections when using a weighted random selection method.

Keywords: basketball; optimization; predictive modeling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/jqas-2016-0062 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:13:y:2017:i:2:p:79-93:n:1

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html

DOI: 10.1515/jqas-2016-0062

Access Statistics for this article

Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman

More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:jqsprt:v:13:y:2017:i:2:p:79-93:n:1