EconPapers    
Economics at your fingertips  
 

Estimating the effect of plate discipline using a causal inference framework: an application of the G-computation algorithm

Vock David Michael () and Vock Laura Frances Boehm ()
Additional contact information
Vock David Michael: Division of Biostatistics, University of Minnesota Twin Cities, 420 Delaware St SE, MMC 303, Minneapolis, MN 55455, USA
Vock Laura Frances Boehm: Department of Mathematics, Computer Science, and Statistics, Gustavus Adolphus College, Saint Peter, MN, USA

Journal of Quantitative Analysis in Sports, 2018, vol. 14, issue 2, 37-56

Abstract: Offensive performance in baseball depends on a number of correlated factors: the pitches the batter faces, the batter’s choice to swing, and the batter’s hitting ability. Recently a renewed focus on the effect of plate discipline on batter performance has emerged. Plate discipline has traditionally been summarized as the proportion of pitches inside and outside of the strike zone a player swings at; however, there have been few metrics proposed to assess the effect of plate discipline directly on batters’ outcomes. In this paper, we focus on estimating a batter’s performance if he were able to adopt a different plate discipline. Because we wish to assess the effect of a counterfactual plate discipline, we use a potential outcome framework and show how the G-computation algorithm can be used to isolate the effect of plate discipline separately from a batter’s hitting ability or the types of pitches the batter faces. As an example, we implement our approach using data collected with the PITCHf/x system over the 2012–2014 seasons to identify the improvement Starlin Castro would expect to see in offensive performance were he able to adopt Andrew McCutchen’s plate discipline. We estimate that had Castro adopted McCutchen’s discipline his batting average, on-base percentage, and slugging percentage would have increased 0.017 (se = 0.004), 0.040 (se = 0.006), and 0.028 (se = 0.008), respectively.

Keywords: baseball; causal inference; G-computation algorithm; plate discipline; thin plate regression splines (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1515/jqas-2016-0029 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:14:y:2018:i:2:p:37-56:n:1

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html

DOI: 10.1515/jqas-2016-0029

Access Statistics for this article

Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman

More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:jqsprt:v:14:y:2018:i:2:p:37-56:n:1