EconPapers    
Economics at your fingertips  
 

A Bayesian method for computing intrinsic pitch values using kernel density and nonparametric regression estimates

Healey Glenn ()
Additional contact information
Healey Glenn: Electrical Engineering and Computer Science, University of California, Irvine CA 92617, USA

Journal of Quantitative Analysis in Sports, 2019, vol. 15, issue 1, 59-74

Abstract: The deployment of sensors that characterize the trajectory of pitches and batted balls in three dimensions provides the opportunity to assign an intrinsic value to a pitch that depends on its physical properties and not on its observed outcome. We exploit this opportunity by using a Bayesian framework to learn a set of mappings from five-dimensional velocity, movement, and location vectors to intrinsic pitch values. A kernel method generates nonparametric estimates for the component probability density functions in Bayes theorem while nonparametric regression is used to derive a batted ball weight function that is invariant to the defense, ballpark, and atmospheric conditions. Cross-validation is used to determine the parameters of the model. We use Cronbach’s alpha to show that intrinsic pitch values have a significantly higher reliability than outcome-based pitch values. We also develop a method to combine intrinsic values at the individual pitch level into a statistic that captures the value of a pitcher’s collection of pitches over a period of time. We use this statistic to show that pitchers who outperform their intrinsic values during a season tend to perform worse the following year. We also show that this statistic provides better predictive value for future Earned Run Average (ERA) than either current ERA or Fielding Independent Pitching (FIP).

Keywords: baseball; Bayesian; kernel density estimates; machine learning; pitch value; reliability (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/jqas-2017-0058 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:15:y:2019:i:1:p:59-74:n:1

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html

DOI: 10.1515/jqas-2017-0058

Access Statistics for this article

Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman

More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:jqsprt:v:15:y:2019:i:1:p:59-74:n:1