Shot-by-shot stochastic modeling of individual tennis points
Floyd Calvin Michael (),
Hoffman Matthew () and
Fokoue Ernest ()
Additional contact information
Floyd Calvin Michael: Rochester Institute of Technology, Department of School of Mathematical Sciences, Rochester, NY 14623, USA
Hoffman Matthew: Rochester Institute of Technology, Department of School of Mathematical Sciences, Rochester, NY, USA
Fokoue Ernest: Rochester Institute of Technology, Department of School of Mathematical Sciences, Rochester, NY, USA
Journal of Quantitative Analysis in Sports, 2020, vol. 16, issue 1, 57-71
Abstract:
Individual tennis points evolve over time and space, as each of the two opposing players are constantly reacting and positioning themselves in response to strikes of the ball. However, these reactions are diminished into simple tally statistics such as the amount of winners or unforced errors a player has. In this paper, a new way is proposed to evaluate how an individual tennis point is evolving, by measuring how many points a player can expect from each shot, given who struck the shot and where both players are located. This measurement, named “Expected Shot Value” (ESV), derives from stochastically modeling each shot of individual tennis points. The modeling will take place on multiple resolutions, differentiating between the continuous player movement and discrete events such as strikes occurring and duration of shots ending. Multi-resolution stochastic modeling allows for the incorporation of information-rich spatiotemporal player-tracking data, while allowing for computational tractability on large amounts of data. In addition to estimating ESV, this methodology will be able to identify the strengths and weaknesses of specific players, which will have the ability to guide a player’s in-match strategy.
Keywords: multiresolution; spatiotemporal data; stochastic modeling; sports; tennis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/jqas-2018-0036 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:16:y:2020:i:1:p:57-71:n:1
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html
DOI: 10.1515/jqas-2018-0036
Access Statistics for this article
Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman
More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().