EconPapers    
Economics at your fingertips  
 

Algorithmically deconstructing shot locations as a method for shot quality in hockey

Becker Devan G. (), Woolford Douglas G. and Dean Charmaine B.
Additional contact information
Becker Devan G.: The University of Western Ontario, London, Canada
Woolford Douglas G.: The University of Western Ontario, London, Canada
Dean Charmaine B.: The University of Waterloo, Waterloo, Canada

Journal of Quantitative Analysis in Sports, 2021, vol. 17, issue 2, 107-115

Abstract: Spatial point processes have been successfully used to model the relative efficiency of shot locations for each player in professional basketball games. Those analyses were possible because each player makes enough baskets to reliably fit a point process model. Goals in hockey are rare enough that a point process cannot be fit to each player’s goal locations, so novel techniques are needed to obtain measures of shot efficiency for each player. A Log-Gaussian Cox Process (LGCP) is used to model all shot locations, including goals, of each NHL player who took at least 500 shots during the 2011–2018 seasons. Each player’s LGCP surface is treated as an image and these images are then used in an unsupervised statistical learning algorithm that decomposes the pictures into a linear combination of spatial basis functions. The coefficients of these basis functions are shown to be a very useful tool to compare players. To incorporate goals, the locations of all shots that resulted in a goal are treated as a “perfect player” and used in the same algorithm (goals are further split into perfect forwards, perfect centres and perfect defence). These perfect players are compared to other players as a measure of shot efficiency. This analysis provides a map of common shooting locations, identifies regions with the most goals relative to the number of shots and demonstrates how each player’s shot location differs from scoring locations.

Keywords: image recognition; log-Gaussian cox processes; non-negative matrix factorization; spatial point processes; statistical learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/jqas-2020-0012 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:17:y:2021:i:2:p:107-115:n:1

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html

DOI: 10.1515/jqas-2020-0012

Access Statistics for this article

Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman

More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:jqsprt:v:17:y:2021:i:2:p:107-115:n:1