EconPapers    
Economics at your fingertips  
 

TRAP: a predictive framework for the Assessment of Performance in Trail Running

Fogliato Riccardo (), Oliveira Natalia L. () and Yurko Ronald ()
Additional contact information
Fogliato Riccardo: Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
Oliveira Natalia L.: Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
Yurko Ronald: Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

Journal of Quantitative Analysis in Sports, 2021, vol. 17, issue 2, 129-143

Abstract: Trail running is an endurance sport in which athletes face severe physical challenges. Due to the growing number of participants, the organization of limited staff, equipment, and medical support in these races now plays a key role. Monitoring runner’s performance is a difficult task that requires knowledge of the terrain and of the runner’s ability. In the past, choices were solely based on the organizers’ experience without reliance on data. However, this approach is neither scalable nor transferable. Instead, we propose a firm statistical methodology to perform this task, both before and during the race. Our proposed framework, Trail Running Assessment of Performance (TRAP), studies (1) the assessment of the runner’s ability to reach the next checkpoint, (2) the prediction of the runner’s expected passage time at the next checkpoint, and (3) corresponding prediction intervals for the passage time. We apply our methodology, using the race history of runners from the International Trail Running Association (ITRA) along with checkpoint and terrain-level information, to the “holy grail” of ultra-trail running, the Ultra-Trail du Mont-Blanc (UTMB) race, demonstrating the predictive power of our methodology.

Keywords: ITRA; random forests; trail running; UTMB (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/jqas-2020-0013 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:17:y:2021:i:2:p:129-143:n:5

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html

DOI: 10.1515/jqas-2020-0013

Access Statistics for this article

Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman

More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:jqsprt:v:17:y:2021:i:2:p:129-143:n:5