EconPapers    
Economics at your fingertips  
 

A Bayesian marked spatial point processes model for basketball shot chart

Jiao Jieying (), Hu Guanyu and Yan Jun
Additional contact information
Jiao Jieying: Department of Statistics, University of Connecticut, Storrs, CT, 06269, USA
Hu Guanyu: Department of Statistics, University of Connecticut, Storrs, CT, 06269, USA
Yan Jun: Department of Statistics, University of Connecticut, Storrs, CT, 06269, USA

Journal of Quantitative Analysis in Sports, 2021, vol. 17, issue 2, 77-90

Abstract: The success rate of a basketball shot may be higher at locations where a player makes more shots. For a marked spatial point process, this means that the mark and the intensity are associated. We propose a Bayesian joint model for the mark and the intensity of marked point processes, where the intensity is incorporated in the mark model as a covariate. Inferences are done with a Markov chain Monte Carlo algorithm. Two Bayesian model comparison criteria, the Deviance Information Criterion and the Logarithm of the Pseudo-Marginal Likelihood, were used to assess the model. The performances of the proposed methods were examined in extensive simulation studies. The proposed methods were applied to the shot charts of four players (Curry, Harden, Durant, and James) in the 2017–2018 regular season of the National Basketball Association to analyze their shot intensity in the field and the field goal percentage in detail. Application to the top 50 most frequent shooters in the season suggests that the field goal percentage and the shot intensity are positively associated for a majority of the players. The fitted parameters were used as inputs in a secondary analysis to cluster the players into different groups.

Keywords: MCMC; model selection; sports analytic (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1515/jqas-2019-0106 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:17:y:2021:i:2:p:77-90:n:2

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html

DOI: 10.1515/jqas-2019-0106

Access Statistics for this article

Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman

More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:jqsprt:v:17:y:2021:i:2:p:77-90:n:2