Evaluating probabilistic forecasts of football matches: the case against the ranked probability score
Wheatcroft Edward ()
Additional contact information
Wheatcroft Edward: London School of Economics and Political Science, London, UK
Journal of Quantitative Analysis in Sports, 2021, vol. 17, issue 4, 273-287
Abstract:
A scoring rule is a function of a probabilistic forecast and a corresponding outcome used to evaluate forecast performance. There is some debate as to which scoring rules are most appropriate for evaluating forecasts of sporting events. This paper focuses on forecasts of the outcomes of football matches. The ranked probability score (RPS) is often recommended since it is ‘sensitive to distance’, that is it takes into account the ordering in the outcomes (a home win is ‘closer’ to a draw than it is to an away win). In this paper, this reasoning is disputed on the basis that it adds nothing in terms of the usual aims of using scoring rules. A local scoring rule is one that only takes the probability placed on the outcome into consideration. Two simulation experiments are carried out to compare the performance of the RPS, which is non-local and sensitive to distance, the Brier score, which is non-local and insensitive to distance, and the Ignorance score, which is local and insensitive to distance. The Ignorance score outperforms both the RPS and the Brier score, casting doubt on the value of non-locality and sensitivity to distance as properties of scoring rules in this context.
Keywords: football forecasting; forecast evaluation; Ignorance score; ranked probability score; scoring rules (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/jqas-2019-0089 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:17:y:2021:i:4:p:273-287:n:1
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html
DOI: 10.1515/jqas-2019-0089
Access Statistics for this article
Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman
More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().