EconPapers    
Economics at your fingertips  
 

Comparing and Forecasting Performances in Different Events of Athletics Using a Probabilistic Model

Godsey Brian
Additional contact information
Godsey Brian: University of Maryland School of Medicine

Journal of Quantitative Analysis in Sports, 2012, vol. 8, issue 2, 25

Abstract: Though athletics statistics are abundant, it is a difficult task to quantitatively compare performances from different events of track, field, and road running in a meaningful way. There are several commonly-used methods, but each has its limitations. Some methods, for example, are valid only for running events, or are unable to compare men's performances to women's, while others are based largely on world records and are thus unsuitable for comparing world records to one other. The most versatile and widely-used statistic is a set of scoring tables compiled by the IAAF, which are updated and published every few years. Unfortunately, these methods are not fully disclosed. In this paper, we propose a straight-forward, objective, model-based algorithm for assigning scores to athletic performances for the express purpose of comparing marks between different events. Specifically, the main score we propose is based on the expected number of athletes who perform better than a given mark within a calendar year. Computing this naturally interpretable statistic requires only a list of the top performances in each event and is not overly dependent on a small number of marks, such as the world records. We found that this statistic could predict the quality of future performances better than the IAAF scoring tables, and is thus better suited for comparing performances from different events. In addition, the probabilistic model used to generate the performance scores allows for multiple interpretations which can be adapted for various purposes, such as calculating the expected top mark in a given event or calculating the probability of a world record being broken within a certain time period. In this paper, we give the details of the model and the scores, a comparison with the IAAF scoring tables, and a demonstration of how we can calculate expectations of what might happen in the coming Olympic year. Our conclusion is that a probabilistic model such as the one presented here is a more informative and more versatile choice than the standard methods for comparing athletic performances.

Keywords: athletics; probabilistic model; Bayesian (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/1559-0410.1434 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:8:y:2012:i:2:n:4

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html

DOI: 10.1515/1559-0410.1434

Access Statistics for this article

Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman

More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:jqsprt:v:8:y:2012:i:2:n:4