Bootstrap, Jackknife and COLS: Bias and Mean Squared Error in Estimation of Autoregressive Models
Gareth Liu-Evans () and
Garry Phillips
Journal of Time Series Econometrics, 2012, vol. 4, issue 2, 35
Abstract:
We compare a number of bias-correction methodologies in terms of mean squared error and remaining bias, including the residual bootstrap, the relatively unexplored Quenouille jackknife, and methods based on analytical approximation of moments. We introduce a new higher-order jackknife estimator for the AR(1) with constant. Simulation results are presented for four different error structures, including GARCH. We include results for a relatively extreme situation where the errors are highly skewed and leptokurtic. It is argued that the bootstrap and analytical-correction (COLS) approaches are to be favoured overall, though the jackknife methods are the least biased. We find that COLS tends to have the lowest mean squared error, though the bootstrap also does well.
Keywords: autoregression; bias; efficiency; mean squared error; bootstrap; jackknife; moment approximation; non-normal (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1515/1941-1928.1122 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:jtsmet:v:4:y:2012:i:2:n:1
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jtse/html
DOI: 10.1515/1941-1928.1122
Access Statistics for this article
Journal of Time Series Econometrics is currently edited by Javier Hidalgo
More articles in Journal of Time Series Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().