EconPapers    
Economics at your fingertips  
 

Optimal Real-Time Filters for Linear Prediction Problems

Wildi Marc () and Tucker McElroy ()
Additional contact information
Wildi Marc: IDP, Zurich University of Applied Sciences, Rosenstrasse 8, 8401 Winterthur, Switzerland

Journal of Time Series Econometrics, 2016, vol. 8, issue 2, 155-192

Abstract: The classic model-based paradigm in time series analysis is rooted in the Wold decomposition of the data-generating process into an uncorrelated white noise process. By design, this universal decomposition is indifferent to particular features of a specific prediction problem (e. g., forecasting or signal extraction) – or features driven by the priorities of the data-users. A single optimization principle (one-step ahead forecast error minimization) is proposed by this classical paradigm to address a plethora of prediction problems. In contrast, this paper proposes to reconcile prediction problem structures, user priorities, and optimization principles into a general framework whose scope encompasses the classic approach. We introduce the linear prediction problem (LPP), which in turn yields an LPP objective function. Then one can fit models via LPP minimization, or one can directly optimize the linear filter corresponding to the LPP, yielding the Direct Filter Approach. We provide theoretical results and practical algorithms for both applications of the LPP, and discuss the merits and limitations of each. Our empirical illustrations focus on trend estimation (low-pass filtering) and seasonal adjustment in real-time, i. e., constructing filters that depend only on present and past data.

Keywords: frequency domain; seasonality; time series; trends (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1515/jtse-2014-0019 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jtsmet:v:8:y:2016:i:2:p:155-192:n:2

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jtse/html

DOI: 10.1515/jtse-2014-0019

Access Statistics for this article

Journal of Time Series Econometrics is currently edited by Javier Hidalgo

More articles in Journal of Time Series Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:jtsmet:v:8:y:2016:i:2:p:155-192:n:2