A Variance-Components Model for Distance-Matrix Phylogenetic Reconstruction
Gilks Walter R,
Nye Tom M.W. and
Lio Pietro
Statistical Applications in Genetics and Molecular Biology, 2011, vol. 10, issue 1, 36
Abstract:
Phylogenetic trees describe evolutionary relationships between related organisms (taxa). One approach to estimating phylogenetic trees supposes that a matrix of estimated evolutionary distances between taxa is available. Agglomerative methods have been proposed in which closely related taxon-pairs are successively combined to form ancestral taxa. Several of these computationally efficient agglomerative algorithms involve steps to reduce the variance in estimated distances. We propose an agglomerative phylogenetic method which focuses on statistical modeling of variance components in distance estimates. We consider how these variance components evolve during the agglomerative process. Our method simultaneously produces two topologically identical rooted trees, one tree having branch lengths proportional to elapsed time, and the other having branch lengths proportional to underlying evolutionary divergence. The method models two major sources of variation which have been separately discussed in the literature: noise, reflecting inaccuracies in measuring divergences, and distortion, reflecting randomness in the amounts of divergence in different parts of the tree. The methodology is based on successive hierarchical generalized least-squares regressions. It involves only means, variances and covariances of distance estimates, thereby avoiding full distributional assumptions. Exploitation of the algebraic structure of the estimation leads to an algorithm with computational complexity comparable to the leading published agglomerative methods. A parametric bootstrap procedure allows full uncertainty in the phylogenetic reconstruction to be assessed. Software implementing the methodology may be freely downloaded from StatTree.
Keywords: agglomerative method; distance matrix; generalized least-squares regression; phylogenetic tree; variance-components model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1574 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:16
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1574
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().