Imputation Estimators Partially Correct for Model Misspecification
Minin Vladimir N.,
O'Brien John D. and
Seregin Arseni
Statistical Applications in Genetics and Molecular Biology, 2011, vol. 10, issue 1, 1-24
Abstract:
Inference problems with incomplete observations often aim at estimating population properties of unobserved quantities. One simple way to accomplish this estimation is to impute the unobserved quantities of interest at the individual level and then take an empirical average of the imputed values. We show that this simple imputation estimator can provide partial protection against model misspecification. We illustrate imputation estimators’ robustness to model specification on three examples: mixture model-based clustering, estimation of genotype frequencies in population genetics, and estimation of Markovian evolutionary distances. In the final example, using a representative model misspecification, we demonstrate that in non-degenerate cases, the imputation estimator dominates the plug-in estimate asymptotically. We conclude by outlining a Bayesian implementation of the imputation-based estimation.
Keywords: exponential family; imputation; incomplete observations; model misspecification; robustness (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1650 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:17
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1650
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().