Learning Monotonic Genotype-Phenotype Maps
Beerenwinkel Niko,
Knupfer Patrick and
Tresch Achim
Statistical Applications in Genetics and Molecular Biology, 2011, vol. 10, issue 1, 1-27
Abstract:
Evolutionary escape of pathogens from the selective pressure of immune responses and from medical interventions is driven by the accumulation of mutations. We introduce a statistical model for jointly estimating the dynamics and dependencies among genetic alterations and the associated phenotypic changes. The model integrates conjunctive Bayesian networks, which define a partial order on the occurrences of genetic events, with isotonic regression. The resulting genotype-phenotype map is non-decreasing in the lattice of genotypes. It describes evolutionary escape as a directed process following a phenotypic gradient, such as a monotonic fitness landscape. We present efficient algorithms for parameter estimation and model selection. The model is validated using simulated data and applied to HIV drug resistance data. We find that the effect of many resistance mutations is non-linear and depends on the genetic background in which they occur.
Keywords: genotype-phenotype map; conjunctive Bayesian networks; HIV drug resistance; isotonic regression (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1603 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:3
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1603
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().