EconPapers    
Economics at your fingertips  
 

Sparse Canonical Covariance Analysis for High-throughput Data

Lee Woojoo, Lee Donghwan, Lee Youngjo and Pawitan Yudi

Statistical Applications in Genetics and Molecular Biology, 2011, vol. 10, issue 1, 1-24

Abstract: Canonical covariance analysis (CCA) has gained popularity as a method for the analysis of two sets of high-dimensional genomic data. However, it is often difficult to interpret the results because canonical vectors are linear combinations of all variables, and the coefficients are typically nonzero. Several sparse CCA methods have recently been proposed for reducing the number of nonzero coefficients, but these existing methods are not satisfactory because they still give too many nonzero coefficients. In this paper, we propose a new random-effect model approach for sparse CCA; the proposed algorithm can adapt arbitrary penalty functions to CCA without much computational demands. Through simulation studies, we compare various penalty functions in terms of the performance of correct model identification. We also develop an extension of sparse CCA to address more than two sets of variables on the same set of observations. We illustrate the method with an analysis of the NCI cancer dataset.

Keywords: canonical covariance analysis; sparsity; random-effect model; high-dimensional genomic data (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1638 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:30

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.2202/1544-6115.1638

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:30