EconPapers    
Economics at your fingertips  
 

Comparison of Clinical Subgroup aCGH Profiles through Pseudolikelihood Ratio Tests

Engler David, Shen Yiping, Gusella James and Betensky Rebecca A.

Statistical Applications in Genetics and Molecular Biology, 2011, vol. 10, issue 1, 1-23

Abstract: Array-based Comparative Genomic Hybridization (aCGH) is a microarray-based technology that assists in identification of DNA sequence copy number changes across the genome. Examination of differences in instability phenotype, or pattern of copy number alterations, between cancer subtypes can aid in classification of cancers and lead to better understanding of the underlying cytogenic mechanism. Instability phenotypes are composed of a variety of copy number alteration features including height or magnitude of copy number alteration level, frequency of transition between copy number states such as gain and loss, and total number of altered clones or probes. That is, instability phenotype is multivariate in nature. Current methods of instability phenotype assessment, however, are limited to univariate measures and are therefore limited in both sensitivity and interpretability. In this paper, a novel method of instability assessment is presented that is based on the Engler et al. (2006) pseudolikelhood approach for aCGH data analysis. Through use of a pseudolikelihood ratio test (PLRT), more sensitive assessment of instability phenotype differences between cancer subtypes is possible. Evaluation of the PLRT method is conducted through analysis of a meningioma data set and through simulation studies. Results are shown to be more accurate and more easily interpretable than current measures of instability assessment.

Keywords: array-CGH; genetic instability; pseudolikelihood ratio test (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1407 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:31

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.2202/1544-6115.1407

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:31